451 research outputs found

    Computer Simulations of Quantum Chains

    Full text link
    We report recent progress in computer simulations of quantum systems described in the path-integral formulation. For the example of the ϕ4\phi^4 quantum chain we show that the accuracy of the simulation may greatly be enhanced by a combination of multigrid update techniques with a refined discretization scheme. This allows us to assess the accuracy of a variational approximation.Comment: 5 pages, LaTeX + 2 postscript figures. Talk presented by TS at "Path Integrals from meV to MeV: Dubna '96". See also http://www.cond-mat.physik.uni-mainz.de/~janke/doc/home_janke.htm

    From particle condensation to polymer aggregation

    Full text link
    We draw an analogy between droplet formation in dilute particle and polymer systems. Our arguments are based on finite-size scaling results from studies of a two-dimensional lattice gas to three-dimensional bead-spring polymers. To set the results in perspective, we compare with in part rigorous theoretical scaling laws for canonical condensation in a supersaturated gas at fixed temperature, and derive corresponding scaling predictions for an undercooled gas at fixed density. The latter allows one to efficiently employ parallel multicanonical simulations and to reach previously not accessible scaling regimes. While the asymptotic scaling can not be observed for the comparably small polymer system sizes, they demonstrate an intermediate scaling regime also observable for particle condensation. Altogether, our extensive results from computer simulations provide clear evidence for the close analogy between particle condensation and polymer aggregation in dilute systems.Comment: 10 pages, 6 figure

    Monte Carlo Study of Pure-Phase Cumulants of 2D q-State Potts Models

    Get PDF
    We performed Monte Carlo simulations of the two-dimensional q-state Potts model with q=10, 15, and 20 to study the energy and magnetization cumulants in the ordered and disordered phase at the first-order transition point βt\beta_t. By using very large systems of size 300 x 300, 120 x 120, and 80 x 80 for q=10, 15, and 20, respectively, our numerical estimates provide practically (up to unavoidable, but very small statistical errors) exact results which can serve as a useful test of recent resummed large-q expansions for the energy cumulants by Bhattacharya `et al.' [J. Phys. I (France) 7 (1997) 81]. Up to the third order cumulant and down to q=10 we obtain very good agreement, and also the higher-order estimates are found to be compatible.Comment: 18 pages, LaTeX + 2 postscript figures. To appear in J. Phys. I (France), May 1997 See also http://www.cond-mat.physik.uni-mainz.de/~janke/doc/home_janke.htm

    Shape anisotropy of polymers in disordered environment

    Get PDF
    We study the influence of structural obstacles in a disordered environment on the size and shape characteristics of long flexible polymer macromolecules. We use the model of self-avoiding random walks on diluted regular lattices at the percolation threshold in space dimensions d=2, 3. Applying the Pruned-Enriched Rosenbluth Method (PERM), we numerically estimate rotationally invariant universal quantities such as the averaged asphericity A_d and prolateness S of polymer chain configurations. Our results quantitatively reveal the extent of anisotropy of macromolecules due to the presence of structural defects.Comment: 8 page

    High-Temperature Series Expansions for Random Potts Models

    Get PDF
    We discuss recently generated high-temperature series expansions for the free energy and the susceptibility of random-bond q-state Potts models on hypercubic lattices. Using the star-graph expansion technique quenched disorder averages can be calculated exactly for arbitrary uncorrelated coupling distributions while keeping the disorder strength p as well as the dimension d as symbolic parameters. We present analyses of the new series for the susceptibility of the Ising (q=2) and 4-state Potts model in three dimensions up to order 19 and 18, respectively, and compare our findings with results from field-theoretical renormalization group studies and Monte Carlo simulations.Comment: 16 pages,cmp209.sty (included), 9 postscript figures, author information under http://www.physik.uni-leipzig.de/index.php?id=2
    corecore